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Abstract

Background: Classification of optical coherence tomography (OCT) images can be achieved with high accuracy
using classical convolution neural networks (CNN), a commonly used deep learning network for computer-aided
diagnosis. Classical CNN has often been criticized for suppressing positional relations in a pooling layer. Therefore,
because capsule networks can learn positional information from images, we attempted application of a capsule
network to OCT images to overcome that shortcoming. This study is our attempt to improve classification accuracy
by replacing CNN with a capsule network.

Methods: From an OCT dataset, we produced a training dataset of 83,484 images and a test dataset of 1000
images. For training, the dataset comprises 37,205 images with choroidal neovascularization (CNV), 11,348 with
diabetic macular edema (DME), 8616 with drusen, and 26,315 normal images. The test dataset has 250 images from
each category. The proposed model was constructed based on a capsule network for improving classification
accuracy. It was trained using the training dataset. Subsequently, the test dataset was used to evaluate the trained
model.

Results: Classification of OCT images using our method achieved accuracy of 99.6%, which is 3.2 percentage points
higher than that of other methods described in the literature.

Conclusion: The proposed method achieved classification accuracy results equivalent to those reported for other
methods for CNV, DME, drusen, and normal images.

Keywords: Capsule network, Choroidal neovascularization, Deep learning, Diabetic macular edema, Drusen, Optical
coherence tomography

Background
The increase of diabetic patients has come to present
difficulty worldwide in recent years. Globally, an esti-
mated 422 million adults were living with diabetes melli-
tus in 2014, compared to 108 million in 1980 [1].

Diabetes causes diabetic nephropathy, diabetic neur-
opathy, and diabetic macular edema (DME). In fact,
DME might affect up to 746,000 persons with diabetes
who are 40 years or older in the United States [2]. Al-
though DME engenders vision loss, early detection and
prompt treatment can avert that outcome. From a much
broader perspective, age-related macular degeneration
(AMD) is expected to affect 8.7% of the worldwide
population. The projected number of people with the
disease is around 196 million in 2020, increasing to 288
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million in 2040 [3]. Early detection and prompt treat-
ment can prevent AMD leading to vision loss. To detect
these diseases, optical coherence tomography (OCT) is
the most commonly used imaging modality in ophthal-
mology [4]. These initial diseases can be detected by
screening with OCT, but increased screening with OCT
images multiplies the burdens on ophthalmologists, who
must interpret these images. Therefore, an automatic
diagnostic screening system has been developed actively
to reduce ophthalmologists’ burdens.
In the field of medical image classification with deep

learning [5–10], OCT image classification has been
undertaken in earnest. Kermany et al. used Inception-V3
for the classification of OCT images into four classes:
choroidal neovascularization (CNV), DME, drusen, and
normal. The classification accuracy was reportedly 96.1%
[11]. However, traditional convolutional neural networks
(CNNs) have sometimes been criticized because their
pooling operations nearly eliminate positional informa-
tion [12]. Losing positional information might be a
bottleneck hindering efforts to improve OCT image clas-
sification accuracy.
To overcome this shortcoming, Hinton et al. devel-

oped a capsule network that can learn positional rela-
tions among images using capsules [13–15]. Capsule
networks can achieve better performance than existing
CNN. For this study using an OCT dataset used for earl-
ier research, we attempted to achieve higher classifica-
tion accuracy using a model based on a capsule network.

Methods
OCT dataset
Kermany et al. released the OCT dataset used for an earlier
study to Kaggle [11]. That dataset, which included retinal
OCT images, was downloaded from the Kaggle website
(https://www.kaggle.com/paultimothymooney/kermany201
8, accessed on May 10, 2018). This published dataset in-
cludes 84,484 images: 83,484 from the training dataset and
1000 from a test dataset. The dataset included fewer OCT
images than the dataset used for the earlier study. The
training dataset comprised 37,205 images showing CNV,
11,348 showing DME, 8616 showing drusen, and 26,315
normal images. The test dataset comprised 250 images
from each class.

We divided the training dataset into a sub-training
dataset and a validation dataset, which included 4000
images extracted randomly from 1000 images of each
class. The sub-training dataset includes the remaining
training data. The image format for the OCT dataset is
Joint Photographic Experts Group 8-bit. Figure 1 por-
trays some OCT dataset images. Figure 2 presents OCT
dataset division details.

Capsule network
Capsules, which are groups of neurons with outputs
representing different properties of the same object, have
a vector that can learn positional relations between fea-
tures in images [15]. The coupling coefficients between
capsules and all capsules in the layer above it learn with
dynamic routing, which enables them to learn positional
relations among features. Reportedly, the method provides
higher generalization performance than that provided by
traditional CNN for small affine transformations of the
training data. For that reason, the network requires far
fewer training data [13–15].

Model architecture
Capsule network architecture
The original capsule network was a network for classifi-
cation of MNIST [16] images with 28 × 28 size. The net-
work architecture was shallow, with only two
convolutional layers and one fully connected layer. The
first layer had 256 filters, 9 × 9 convolution kernels with
a stride of 1. The second layer (Primary Caps) was a
convolutional capsule layer with 32 channels of convolu-
tional eight dimension (8D) capsules (i.e., each primary
capsule contains eight convolutional units with a 9 × 9
kernel and a stride of 2 pixels). Both activation functions
were rectified linear units. The final layer (Digit Caps)
had one 16D capsule per digit class. Each capsule re-
ceived input from all capsules of the layer below.
The likelihood vector, elements of which were the like-

lihood of each digit class, was calculated from the L2
norm of Digit Caps. The output label was the class of
the highest component in the likelihood vector [15]. De-
tails of this network architecture are presented in
Fig. 3a.

Fig. 1 Optical coherence tomography images in the OCT dataset. Panels present images: far left, choroidal neovascularization (CNV); middle left,
diabetic macular edema (DME); middle right, drusen; far right, normal
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Proposed network architecture
For classification of images of 512 × 512, we propose a
network model with four added convolutional layers to
the capsule network. The first reason is that increasing
the convolutional layers of the capsule network was

expected to improve accuracy [17]. The second reason is
that input images were convolved as the same size as
Primary Caps in the capsule network. Figure 4 presents
the proposed network architecture. Figure 3b shows
some related details.

Fig. 2 Details of OCT dataset division. The OCT dataset comprises training and test datasets. The training dataset was divided into a sub-training
dataset and a validation dataset

Fig. 3 Network architecture details. a Capsule network architecture and b proposed network architecture

Tsuji et al. BMC Ophthalmology          (2020) 20:114 Page 3 of 9



The first layer has 256 filters: 4 × 4 convolution kernels
with a stride of 2 pixels. The second layer has 128 filters.
The third and the fourth layers have, respectively, 64
layers. The fifth layer has 128 layers. The sixth layer (Pri-
mary Caps) has 32 × 8 filters, 5 × 5 convolutional kernels
with a stride of 2 pixels to produce 32 capsule maps with
capsules of 8D. This layer constructs capsules for dy-
namic routing operations in the next layer. The OCT
Caps has one 16D capsule per class. Each capsule re-
ceives input from all capsules of the layer below. The
likelihood vector is calculated from OCT Caps by L2
norm. The highest elements in the likelihood vector are
defined as the output label. All activation functions are
leaky rectified linear unit (leaky ReLU) functions for
which the configurable slope value is 0.05 instead of a
rectified linear unit (ReLU) function.
At the Intelligent Systems Research Institute, we built

the proposed network model on Reedbush-L running on
a computer (Xeon CPUs; Intel Corp. and Tesla P100 16
GB GPU; NVIDIA Corp.) with a Chainer (ver. 3.3.0)
deep learning framework.

Preprocessing and data augmentation
The proposed network model requires a 512 × 512
image. However, the dataset images were 384–1536
pixels wide and 496–512 pixels high. Therefore, the im-
ages were resized in terms of width and height to 512
pixels using linear interpolation. In addition, the OCT
images were shifted by up to 16 pixels in each direction
with zero padding to increase the number of learning
data. As a result, the number of images used for learning
was increased to 65,536 times (16 × 16 × 16 × 16).

Learning
The OCT dataset published in Kaggle consists of a train-
ing dataset and a test dataset. We trained the proposed
model using an early stopping algorithm [18]. Therefore,
we divided the training dataset into a validation dataset
and sub-training dataset after observing the generalization
performance of the proposed model in learning. The

validation dataset comprises 4000 images from 1000 im-
ages extracted randomly from each class. The sub-training
dataset consists of the remaining training dataset. The test
dataset had 250 images for each class. The training data-
set, the sub-training dataset, the validation dataset, and
the test dataset were designated respectively as Xtrain, Xsub-

train, Xvalid, and Ytest.
The model was trained with Xsubtrain and Xvalid using

Adam optimizer [19]. The batch size was set to 128. The
model was trained for 50 epochs. Early stopping oc-
curred when the Xvalid accuracy became the best in
learning. This learning curve is depicted in Fig. 5. Then,
the proposed model was evaluated using the test dataset.
Additionally, we trained Inception-v3 under the same

learning conditions to compare the proposed model and
those of earlier research. Then, Inception-V3, which was
trained, was evaluated using the test dataset.

Visualizing feature maps
We visualized feature maps using a method inspired by
class activation mapping (CAM) [20] to elucidate which
parts in the OCT image were strongly influential. An
image was input to the trained model. Then 256 feature
maps (6 × 6) were generated from Convolution layer 6.
After the averaged feature map (6 × 6) was resized to in-
put size (512 × 512), it was superimposed on the input
image as a heat map image.

Results
We evaluated the proposed model using the Ytest test
dataset. The numbers of correct answers and rates of
CNV, DME, drusen, and normal were, respectively, 250
(100%), 248 (99.2%), 248 (99.2%), and 250 (100%). The
model achieved average classification accuracy of 99.6%.
More detailed results are presented as a confusion
matrix in Fig. 6a.
We evaluated Inception-V3 similarly. The accuracy of

Inception-V3 is presente in Fig. 6b as a confusion
matrix. The numbers of correct answers and rates of
CNV, DME, drusen, and normal were, respectively, 249

Fig. 4 Proposed network architecture. The proposed model has six convolution layers (five convolution layers + primary caps) and OCT Caps. The
activity vector length of each capsule in the OCT Caps layer shows the presence of an instance of each class. It is used to calculate the classification loss
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Fig. 5 Learning curve. Early stopping occurred when the validation dataset accuracy was the best in learning

Fig. 6 Confusion matrixes of learned model classification. a Confusion matrix by the proposed model and b used by Inception-V3
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(99.6%), 250 (100%), 249 (99.6%), and 250 (100%). Conse-
quently, the average accuracy achieved using Inception-
V3 was 99.8%.
We visualized likelihood vectors, for which coefficients

denote the probability of each class, as calculated from
the OCT Caps. Components of likelihood vectors are
presented in Fig. 7, the axes of which respectively show
the likelihoods of CNV, DME, and DRUSEN. The
marker colors correspond to the correct labels of four
classes in the test dataset. Also, CNV, DME, DRUSEN,
and NORMAL are presented respectively as blue, red,
green, and yellow plotted values.
Heat map images for the respective classes are por-

trayed in Fig. 8. The red zones in heat map images show
activated parts of the proposed model. After expert
ophthalmologists assessed the heat map images, they
confirmed that the activated parts corresponded to the
observed location in the interpretation of OCT image.
Therefore, it can be said, at least qualitatively, that the
proposed model was trained accurately. Additionally,
heat map portrayals of images that were misclassified by
the proposed model are presented in Fig. 9.

Discussion
For the classification of four classes of OCT images, the
proposed method achieved high accuracy of 99.6% using

the network model based on a capsule network. By con-
trast, the best accuracy obtained in earlier studies was
96.1%, obtained when using Inception-v3. This model
has a pooling layer, which is a primary feature of CNN.
In addition, the accuracy of Inception-V3 in the same
condition was 99.8%. Therefore, the proposed model,
which is much shallower than Inception-V3, compares
favorably with it in terms of classification accuracy.
According to an earlier study [21], six ophthalmolo-

gists diagnosed the same test dataset and achieved classi-
fication accuracies of 92.1–99.7%, with mean accuracy of
96.7%. That finding suggests that the proposed network
model performance in terms of OCT image classification
was equivalent to those of expert ophthalmologists.
Misclassified heat map images suggest that the activated

parts in those images are the same locations that ophthal-
mologists interpret. Therefore, the proposed model did
not specifically examine wrong parts. One can infer that
those misclassified images include some disease.
In a typical clinical case, a fundus image is taken using

fluorescein angiography in addition to OCT images.
Fluorescein angiography nevertheless presents several
important shortcomings. The first is a contraindication
to perform fluorescein angiography for patients with se-
vere cardiac disease, severe cerebrovascular disease, se-
vere diabetes, and liver cirrhosis [22–24]. Moreover, it is

Fig. 7 Visualizing of likelihood vectors in the four classes. Likelihood vectors calculated from the test dataset are shown. Axes show the likelihood
of diseases of three kinds. Blue, red, green, and yellow lines respectively represent true labels of CNV, DME, DRUSEN, and NORMAL
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Fig. 8 Visualization of feature maps as heat maps. Left images are input images. Right images are feature maps superimposed on an input image.
Top to bottom, panels show CNV, DME, DRUSEN, and NORMAL

Fig. 9 Visualization of feature maps misclassified by the proposed model. The proposed model misclassified DME (a and b) and DRUSEN (c and
d) as CNV
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impossible to obtain contrast agents for pregnant
women [25, 26]. The second shortcoming is the risk of
side effects presented by fluorescein angiography, such
as anaphylaxis (difficulty of breathing and loss of con-
sciousness) and cardiac arrest [24, 27, 28]. For this study,
the proposed model enables the classification of CNV,
DME, drusen, and normal with high accuracy using
OCT images alone. Therefore, the proposed model can
reduce burdens imposed on ophthalmologists and
patients.
An important limitation of this study is that the pro-

posed model classifies images of only four types: CNV,
DME, drusen, and normal. Retinal disease, such as glau-
coma, Branchi Retinal Vein Occlusion cannot be pre-
dicted because these diseases were not trained in this
study. Future studies will be conducted to classify those
images using this method.

Conclusions
This network model with four convolution layers of an
added capsule network achieved high accuracy for the
released OCT dataset. Results obtained for the four clas-
sifications compare favorably with those reported from
earlier research. This system can reduce ophthalmolo-
gists’ burdens and can be expected to improve patient
access to rapid treatment.
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